Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm

نویسندگان

  • Shahin Rostami
  • Ferrante Neri
چکیده

Real-world problems often involve the optimisation of multiple conflicting objectives. These problems, referred to as multi-objective optimisation problems, are especially challenging when more than three objectives are considered simultaneously. This paper proposes an algorithm to address this class of problems. The proposed algorithm is an evolutionary algorithm based on an evolution strategy framework, and more specifically, on the Covariance Matrix Adaptation Pareto Archived Evolution Strategy (CMA-PAES). A novel selection mechanism is introduced and integrated within the framework. This selection mechanism makes use of an adaptive grid to perform a local approximation of the hypervolume indicator which is then used as a selection criterion. The proposed implementation, named Covariance Matrix Adaptation Pareto Archived Evolution Strategy with Hypervolume-sorted Adaptive Grid Algorithm (CMA-PAES-HAGA), overcomes the limitation of CMA-PAES in handling more than two objectives and displays a remarkably good performance on a scalable test suite in five, seven, and ten-objective problems. The performance of CMA-PAES-HAGA has been compared with that of a competition winning meta-heuristic, representing the state-of-the-art in this sub-field of multi-objective optimisation. The proposed algorithm has been tested in a seven-objective real-world application, i.e. the design of an aircraft lateral control system. In this optimisation problem, CMA-PAES-HAGA greatly outperformed its competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a nonelitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist CovarianceMatrix Adaptation Evolution Strategy (CMA-ES). In the original CMA...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

Modified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations

In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...

متن کامل

IS-PAES: A Constraint-Handling Technique Based on Multiobjective Optimization Concepts

This paper introduces a new constraint-handling method called InvertedShrinkable PAES (IS-PAES), which focuses the search effort of an evolutionary algorithm on specific areas of the feasible region by shrinking the constrained space of single-objective optimization problems. IS-PAES uses an adaptive grid as the original PAES (Pareto Archived Evolution Strategy). However, the adaptive grid of I...

متن کامل

Is-paes: Multiobjective Optimization with Efficient Constraint Handling

This paper introduces a new constraint-handling method called InvertedShrinkable PAES (IS-PAES), which focuses the search effort of an evolutionary algorithm on specific areas of the feasible region by shrinking the constrained space of single-objective optimization problems. IS-PAES uses an adaptive grid as the original PAES (Pareto Archived Evolution Strategy). However, IS-PAES does not have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integrated Computer-Aided Engineering

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016